How We See Our World

Photography alters the way we perceive our environment, social historians tell us, just as editors of architecture magazines argue that photographs change the way we build our houses and cities. Julius Shulman’s widely published black-and-white images of houses in Southern California influenced modernism in post-war homebuilding, for instance, and Ezra Stoller’s shots of crisp skyscrapers swayed executives in the Mad Men era to equate modern architecture with corporate success.

Today’s architectural photographers achieve striking results with digital cameras and images edited on computers, but digitization has its downsides. What role does the professional play “in a world where low-quality snapshots of architecture and design proliferate on the Web?” asks photographer and former Metropolis magazine photo editor Bilyana Dimitrova as she curates an exhibition of 10 of today’s leading American photographers. Presented by the Julius Shulman Institute, “Beyond the Assignment” opens October 5 at the Woodbury University’s WUHO Gallery in Los Angeles. Dimitrova calls the exhibit “a long-overdue look at the way architectural photographers combine technical precision, visual storytelling, and their own points of view to interpret the built environment.”

—ALLEN FREEMAN
Sea Hunt, Microscopic Version

Nicole Goebel measures tiny ocean plant life for a big reason. A research scientist at the University of California–Santa Cruz, she is investigating the connection between the diversity of the microscopic marine phytoplankton community and its ability to turn carbon dioxide into organic material through photosynthesis. The research has implications for climate-driven changes in the ocean ecosystem.

“Phytoplankton not only support the ocean food web but also are responsible for half the oxygen we breathe,” Goebel says. “The problem is that phytoplankton are very challenging to measure—they are tiny and dynamic, and the ocean is big and variable.”

If the research she proposes wins a competition called the PacX Challenge, designed to promote innovative applications of ocean data, she will receive a $50,000 research grant and six months’ use of a Wave Glider, a data-collecting, unmanned ocean vehicle that operates on the energy of the sun and wave action. Liquid Robotics, maker of the glider, is sponsoring the competition. The winner will be announced September 24.

If implemented, Goebel’s research would use the Wave Glider’s highly resolved measurements—information that shows minute changes—to estimate more accurately the ocean’s phytoplankton biomass.

—TOM BENTLEY